你正在设计一个大型无线网络覆盖计划,目标是通过布置多个无线接入点来覆盖一个区域。每个接入点都有不同的信号覆盖范围,安装成本。在预算有限的情况下,保证网络覆盖需求满足,并且总成本不超过预算。
约束条件:
信号覆盖范围:每个接入点能够覆盖一定的区域,区域面积单位为 m2 。
安装成本:每个接入点有一定的安装成本,单位为元,总成本不应超过预算。
题面描述 给定区域覆盖需求面积areaRequirement(单位:m²)和总预算budget(单位:元),以及 n 个可选接入点。第i个接入点的信号覆盖范围为coveragei(m²),安装成本为 costi(元)。在不超过总预算的前提下,选择若干接入点,使得覆盖总面积至少为 areaRequirement。如果有多种选择方式都满足覆盖需求,则选取总成本最小;若成本相同,则取覆盖总面积最大的方案。如果无法满足需求,则输出0。
思路 这是一个典型的「0-1 背包」变形问题: