塔子哥有一个数字串x,她将x的所有非空子序列都取了出来,将其中满足相邻数位两两不同的子序列都加入了集合S 中。
考虑dp,设f[i][c]表示前i个字符组成的以c为结尾的合法子序列个数。
假设当前位为j,由于要去重,前面所有以j结尾的子序列对于当前位来说同样可以构造,所以只需要考虑前一位不是以j结尾的答案,同时注意当前这一位可以单独放一个算子序列,所以加上1。
所以转移方程f[i][j] = sum(f[i]) - f[i - 1][j] + 1,最后统计sum(f[n - 1])即可。
由于dp转移只需要考虑前一位,所以可以优化空间复杂度为O(1)。