#P14074. 【循环2】塔子哥的数数题

【循环2】塔子哥的数数题

题目描述:

给定一个正整数 nn,你需要统计从 11nn 的所有整数中,满足以下条件的整数个数:对于每个整数 ii,将 ii 的各位数字相加的结果对 1010 取模等于 ii 的末尾数字。

具体来说,设 S(i)S(i) 为整数 ii 的各位数字之和,d(i)d(i) 为整数 ii 的末尾数字(即 imod10i \mod 10),我们需要满足以下条件:

S(i)mod10=d(i)S(i) \mod 10 = d(i)

请你计算出满足上述条件的整数的个数。

输入:

  • 一行一个正整数 nn (1n104)(1 \leq n \leq 10^4)

输出:

  • 一行一个整数,表示满足条件的整数个数。

样例输入:

20

样例输出:

样例说明

  • i=1i = 1: S(1)=1S(1) = 1, d(1)=1d(1) = 1, S(1)mod10=1S(1) \mod 10 = 1 (符合)
  • i=2i = 2: S(2)=2S(2) = 2, d(2)=2d(2) = 2, S(2)mod10=2S(2) \mod 10 = 2 (符合)
  • i=3i = 3: S(3)=3S(3) = 3, d(3)=3d(3) = 3, S(3)mod10=3S(3) \mod 10 = 3 (符合)
  • i=4i = 4: S(4)=4S(4) = 4, d(4)=4d(4) = 4, S(4)mod10=4S(4) \mod 10 = 4 (符合)
  • i=5i = 5: S(5)=5S(5) = 5, d(5)=5d(5) = 5, S(5)mod10=5S(5) \mod 10 = 5 (符合)
  • i=6i = 6: S(6)=6S(6) = 6, d(6)=6d(6) = 6, S(6)mod10=6S(6) \mod 10 = 6 (符合)
  • i=7i = 7: S(7)=7S(7) = 7, d(7)=7d(7) = 7, S(7)mod10=7S(7) \mod 10 = 7 (符合)
  • i=8i = 8: S(8)=8S(8) = 8, d(8)=8d(8) = 8, S(8)mod10=8S(8) \mod 10 = 8 (符合)
  • i=9i = 9: S(9)=9S(9) = 9, d(9)=9d(9) = 9, S(9)mod10=9S(9) \mod 10 = 9 (符合)
  • i=10i = 10: S(10)=1S(10) = 1, d(10)=0d(10) = 0, S(10)mod10=1S(10) \mod 10 = 1 (不符合)
  • i=11i = 11: S(11)=2S(11) = 2, d(11)=1d(11) = 1, S(11)mod10=2S(11) \mod 10 = 2 (不符合)
  • i=12i = 12: S(12)=3S(12) = 3, d(12)=2d(12) = 2, S(12)mod10=3S(12) \mod 10 = 3 (不符合)
  • i=13i = 13: S(13)=4S(13) = 4, d(13)=3d(13) = 3, S(13)mod10=4S(13) \mod 10 = 4 (不符合)
  • i=14i = 14: S(14)=5S(14) = 5, d(14)=4d(14) = 4, S(14)mod10=5S(14) \mod 10 = 5 (不符合)
  • i=15i = 15: S(15)=6S(15) = 6, d(15)=5d(15) = 5, S(15)mod10=6S(15) \mod 10 = 6 (不符合)
  • i=16i = 16: S(16)=7S(16) = 7, d(16)=6d(16) = 6, S(16)mod10=7S(16) \mod 10 = 7 (不符合)
  • i=17i = 17: S(17)=8S(17) = 8, d(17)=7d(17) = 7, S(17)mod10=8S(17) \mod 10 = 8 (不符合)
  • i=18i = 18: S(18)=9S(18) = 9, d(18)=8d(18) = 8, S(18)mod10=9S(18) \mod 10 = 9 (不符合)
  • i=19i = 19: S(19)=10S(19) = 10, d(19)=9d(19) = 9, S(19)mod10=0S(19) \mod 10 = 0 (不符合)
  • i=20i = 20: S(20)=2S(20) = 2, d(20)=0d(20) = 0, S(20)mod10=2S(20) \mod 10 = 2 (不符合)

所以一共有99